Palladium-catalysed enantiodivergent synthesis of cis- and trans-4-aminocyclohex-2-enols

R oberto G. P. G atti, A nna L. E. L arsson and J an-E . Bäckvall*
Department of Organic Chemistry, U niversity of U ppsala, B ox 531, S-751 21 U ppsala, Sweden

E nantiomerically pure cis- and trans-4-aminocyclohex-2-enols are prepared from cyclohexa-1,3-diene via (-)-cis-(1R ,4S)-4-acetoxycyclohex-2-enol (-)-2a using palladium(0) chemistry. Benzylamine and diethylamine are tested in the Pd^{0}-catalysed allylic amination reactions. Since acetate is too slow as a leaving group and gave considerable amounts of side products, a number of leaving groups have been investigated. Of these phosphinate and 2,4 -dichlorobenzoate are excellent leaving groups and result in efficient and highly stereoselective reactions; chloride as allylic leaving group also gives good results. By variation of the leaving group and proper choice of the protecting group it is possible to synthesise all four stereoisomers of 4-aminocyclohex-2-enol in good yield and high enantiomeric excess.

Introduction

4-A minocyclohex-2-enols are important structural elements in a number of biologically active compounds such as conduramines ${ }^{1}$ and derivatives. ${ }^{2}$ In connection with a project dealing with new substances for treatment of bronchitis complications, there was a need for a general synthesis of optically pure 4-aminocyclohex-2-enols.
We recently reported a method for an enantiodivergent synthesis of 4 -substituted 2-cycloalkenols from cycloalka-1,3dienes with a combination of palladium and enzyme chemistry (Scheme 1). ${ }^{3}$ The method allows for preparation of both enantiomers with high selectivity.

Scheme 1

In the present paper we have used enantiomerically pure (-)-cis-(1R,4S)-4-acetoxycyclohex-2-enol (-)-2a as a key intermediate for further stereocontrolled palladium(0)-catalysed functionalisation and report on the enantiocontrolled synthesis of all four stereoisomers of 4-aminocyclohex-2-enol (Scheme 2). A n interesting observation is that phosphinates are excellent leaving groups in the Pd°-catalysed allylic substitution with primary and secondary amines.

Results and discussion

(A) R acemates

Theobjective was to synthesise cis- and trans-4-aminocyclohex-2-enols in optically pure form starting from (-)-2a. ${ }^{4}$ Diethylamine and benzylamine $\left(\mathrm{BnNH}_{2}\right)$ were employed as representative amines in the palladium(0)-catalysed allylic aminations. First, the allylic amination was performed to produce a racemic mixture of the amino alcohols (Scheme 3). Thus, cis-4-diethylaminocyclohex-2-enol 6a and cis-4-benzylaminocyclo-hex-2-enol $\mathbf{6 b}$ were prepared starting from cis-1-acetoxy-4-chlorocyclohex-2-ene $8 .{ }^{5}$
The racemic trans stereoisomers were synthesised from (\pm)2a. ${ }^{6}$ Substitution of the OH by chloride with PPh_{3} and N chlorosuccinimide (NCS) ${ }^{7}$ in THF afforded trans-1-acetoxy-4-chlorocyclohex-2-ene 9. Pd^{0}-catalysed allylic amination of chloroacetate 9 with diethylamine or benzylamine gave after hydrolysis trans-4-diethylaminocyclohex-2-enol 7a or trans-4-benzylaminocyclohex-2-enol 7b, respectively. A mino alcohols 6 and $\mathbf{7}$ were used to set up a method for determination of the ee. However, with 9 as the allylic substrate, a moderate regioselectivity was observed. U sing conditions \mathbf{A} in Scheme 3 and diethylamine as the nucleophile about 20% of the γ-substitution product (of trans stereochemistry) was obtained. U sually,

Scheme 3 Reagents and conditions: A, 5\% Pd(dba) ${ }_{2}, 15 \%$ PPh $_{3}, 1.2-3$ equiv. $\mathrm{NHR}^{1} \mathrm{R}^{2}$, 3 equiv. $\mathrm{Et}_{3} \mathrm{~N}$ in THF, RT, N_{2} or Ar atm: 10a (77\%), 10b (81\%); B, $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{M} \mathrm{eOH}-\mathrm{H}_{2} \mathrm{O}$ at RT: 6a (95\%), 6b (98\%), 7a (96\%), 7b (98\%); C , N CS, PPh 3 , TH F, RT (97\%); D, reagents as for A but longer reaction times and $25 \% \mathrm{LiCl}$ added to the reaction mixture: 11a (71\%), 11b (76\%)

Fig. 1 Weaker bond in the 2-position because of steric interactions which increase the relative amount of γ-substitution product
attack at the 4-position relative to the acetate is strongly favoured in analogous 1,4-disubstituted alk-2-enes. ${ }^{5}$ H owever, due to steric interaction between the acetate and the $\mathrm{L}_{2} \mathrm{Pd}$ group in π-allyl intermediate I (Fig. 1) palladium is forced away from the acetate which weakens the palladium-carbon bond in the 2-position. ${ }^{8}$ This will increase the relative rate of attack at the 2-position in I. When R is tert-butyl II the relative amount of attack in the 2 -position increased to $50-60 \%$ in the corresponding reaction (vide infra).
The reaction conditions were further investigated by variation of the solvent, amount of catalyst and ligand and by addition of salt (LiCI). The system with $\mathrm{Pd}(\mathrm{dba})_{2}$ and PPh_{3} in THF with an addition of $25 \mathrm{~mol} \% \mathrm{LiCl}$ decreased the amount of γ-product of I from 20 to 13% with $\mathrm{Et}_{2} \mathrm{NH}$ and from 12 to 5% with BnNH_{2}.

(B) cis E nantiomers

It has been shown that acetate can be used as a leaving group in Pd^{0}-catalysed allylic amination with both primary and secondary amines. ${ }^{9}$ However, when (\pm)-2a was treated with benzylamine in the presence of $\mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{PPh}_{3}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in THF the conversion was low. In an attempt to improve the reaction, different catalysts, ligands and solvents were tried together with variation of the concentration and temperature. The best results were obtained with acetonitrile as the solvent at a reaction temperature of $40^{\circ} \mathrm{C}$. However, the yield of the desired product 6 was still unsatisfactory with considerable amounts of γ-product as well as inversion and elimination products. \dagger Therefore better leaving groups were called for. To increase the reactivity in the Pd^{0}-catalysed nucleophilic displacement, the hydroxy group in 2a was transformed into a reactive leaving group. It has been reported in the literature that ethyl and methyl carbonate can be used as a leaving group in $\mathrm{Pd}^{0}-$

[^0]catalysed allylic amination ${ }^{10}$ but carbonate $\mathbf{1 2}$ gave the nondesired carbamate 13 on reaction with benzylamine [eqn. (1)]. \ddagger

The same results for similar substrates have been reported earlier in our laboratory ${ }^{11}$ and elsewhere. ${ }^{12}$ The use of trifluoroacetate 14 in the corresponding reaction gave 2 a and N benzyItrifluoroacetamide, presumably because of faster nitrogen attack at the carbonyl carbon rather than formation of the π-allyl complex. A ttempts to use a diethylphosphate ester ${ }^{\text {gd,e }}$ as the leaving group, failed since $\mathbf{1 5}$ was very sensitive and hydrolysed quickly after preparation.

14

16

We next tried diphenylphosphinic and benzoate esters. Diphenylphosphinic ester 16 was prepared from enantiomerically pure (-)-2a (89\%) according to L iebeskind et al. ${ }^{13}$ and $2,4-$ dichlorobenzoate ester 17 was prepared (80% yield) by esterification of (-)-2a following the method of H assner. ${ }^{14}$ Both 16 and 17 were excellent substrates in the Pd°-catalysed allylic amination with diethylamine and benzylamine and afforded the amino acetates ($15,4 \mathrm{R}$)-10a and ($15,4 \mathrm{R}$)-10b, which upon hydrolysis yielded the amino alcohols ($15,4 \mathrm{R}$)-6a and ($15,4 \mathrm{R}$)6b, respectively (Scheme 4). In each case the allylic amination

Scheme 4 Reagents and conditions: A, 5\% Pd(dba) ${ }_{2}$, 15\% $\mathrm{PPh}_{3}, 1.2-3$ equiv. $\mathrm{NHR}^{1} \mathrm{R}^{2}, 3$ equiv. $\mathrm{Et}_{3} \mathrm{~N}$ in THF at RT, N_{2} or Ar atm: 16 to 10a (82%), 16 to 10 b (79%), 17 to $10 \mathrm{a}(73 \%), 17$ to $10 \mathrm{~b}(70 \%)$;, $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ at RT: yields as for step B shown in Scheme 3
was highly stereoselective and the enantiomeric excess (ee) of the amino alcohols was $\geq 98 \%$ in both cases. For (1S,4R)-6a 2% of the trans isomer was observed. An explanation could be isomerisation of the π-allyl intermediate by nucleophilic attack by free Pd^{0} on the allyl ligand. ${ }^{15}$
To form a carbon-nitrogen bond at the other allylic carbon in $(-)-\mathbf{2 a}$, it was necessary to protect the hydroxy group and then selectively hydrolyse the acetate before attachment of a leaving group (Scheme 5).
The hydroxy acetate (-)-2a was transformed into the alcohol 18a with tetrahydropyran (THP) protection ${ }^{16}$ and subsequent hydrolysis of the acetoxy group. The alcohol 18a was transformed into its 2,4-dichlorobenzoate ester 19 (vide supra) which on Pd^{0}-catalysed amination and subsequent removal of the TH P group afforded (1R ,4S)-6a and (1R,4S)-6b.

[^1]

Scheme 5 Reagents and conditions: A, i, DHP, PPTS in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at RT (98\%); ii, $20 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ at RT (86\%); B, 2,4 dichlorobenzoic acid, DCC, DM AP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at RT (87\%); C , i, 5\% $\mathrm{Pd}(\mathrm{dba})_{2}, 15 \% \mathrm{PPh}_{3}, 1.2-3$ equiv. $\mathrm{NHR}{ }^{1} \mathrm{R}^{2}, 3$ equiv. $\mathrm{Et}_{3} \mathrm{~N}$ in THF at RT, N_{2} or Ar atm; $\mathrm{ii}, \mathrm{p}-\mathrm{TsOH}, \mathrm{MeOH}, \mathrm{RT}, 6 \mathbf{6} 55 \%$ yield in two steps, $\mathbf{6 b} \mathbf{6 5 \%}$ yield in two steps

(C) trans E nantiomers

Reaction of the enantiomerically pure hydroxy acetate (-1 -2a with NCS and PPh_{3} in THF afforded optically active ($1 \mathrm{~S}, 4 \mathrm{~S}$)-9 with high stereospecificity (cf. racemic reaction, Scheme 3), Subsequent Pd^{0}-catalysed allylic amination employing $\mathrm{Et}_{2} \mathrm{NH}$ and BnNH_{2} followed by hydrolysis gave ($15,4 \mathrm{~S}$)-7a and ($1 \mathrm{~S}, 4 \mathrm{~S}$)-7b, respectively [eqn. (2)]. The yields were the same

$(-)-(1 S, 4 S)-9$

$(1 S, 4 S)-7 a R^{1}=R^{2}=E$ b $R^{1}=H, R^{2}=B n$
as for the racemates (Scheme 3) and the ee was in each case $\geq 98 \%$.

When preparing the other trans enantiomer, the group at the other stereogenic carbon had to be substituted. Some difficulties were encountered when solving this problem. Substitution of the hydroxy group in 18a by chloride with inversion using LiCl , methanesulfonyl chloride (M sCI), 2,4,6-trimethylpyridine in DM F and subsequent Pd^{0}-catalysed allylic amination of the allylic chloride 20a should in analogy to the preparation of ($1 \mathrm{~S}, 4 \mathrm{~S}$) -7 from ($1 \mathrm{~S}, 4 \mathrm{~S}$)-9 give ($1 \mathrm{R}, 4 \mathrm{R}$)-7 after removal of the protecting group. Unfortunately, and to a much greater extent than what had been seen for 9 , the predominant product was the γ-substitution product (vide supra). Using pivalate§ as protecting group instead of THP led to the same discouraging result (Scheme 6). For example, with the pivalate 20b the amount of γ-substitution product was $50-60 \%$ with diethylamine. This result supports the explanation suggested in Fig. 1 for the increased relative amount of γ-isomer. The use of tert-butyldimethylsilyl (TBDM S) I led to decomposition of the silyl ether bond in the amination. A nother way to reach the other trans enantiomer ($1 \mathrm{R}, 4 \mathrm{R}$)-7 would be by a M itsunobu reaction ${ }^{18}$ of $\mathbf{6}$. H owever, reaction of $\mathbf{6 b}$ under M itsunobu conditions failed, even when the amine was protected with tertbutoxycarbonyl (TBOC).||

To solve the problem of obtaining the trans-(1R,4R)enantiomer of the amino alcohol we prepared ($1 R, 4 R$)-9 as

[^2]
a $\mathrm{R}=\mathrm{THP}$
$\mathbf{b} \mathrm{R}=\mathrm{BuCO}^{t}$
$\mathbf{c} \mathrm{R}=\mathrm{TBDMS}$
Scheme 6

20c
(+)-(1R,4R)-9
(1R,4R)-7
Scheme 7 Reagents and conditions: A, TBDM S-CI, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}$ to RT (99\%); B, i, $20 \% \mathrm{KOH}$ in MeOH at RT (98\%); ii, $\mathrm{M} \mathrm{sCl}^{2}$, $\mathrm{LiCl}, \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$ to RT (91\%); $\mathrm{C}, \mathrm{i}, \mathrm{TBAF}$ in THF at RT; ii, $\mathrm{Ac}_{2} \mathrm{O}$ (83\%); D, i, $5 \% \mathrm{Pd}(\mathrm{dba})_{2}, 15 \% \mathrm{PPh}_{3}, 25 \% \mathrm{LiCl}, 1.2-3$ equiv. $\mathrm{NHR}{ }^{1} \mathrm{R}^{2}, 0-3$ equiv. $\mathrm{Et}_{3} \mathrm{~N}$ in THF at RT ; ii, $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ at RT: yields as in Scheme 3
described in Scheme 7. Silylation of (-)-2a with TBDM S-CI gave cis-(1S,4R)-1-acetoxy-4-(tert-butyldimethylsilyloxy)cyclo-hex-2-ene 21c. This compound was converted into (1R,4R)-9 in the following way: hydrolysis of the acetate in 21c and stereospecific substitution of the hydroxy group by chloride with inversion of configuration using $\mathrm{M} \mathrm{sCl}, \mathrm{LiCl}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in methylene dichloride gave trans-(1R,4R)-1-chloro-4-(tert-butyldi-methylsilyloxy)cyclohex-2-ene 20c. Deprotection of TBDMS with tetrabutylammonium fluoride (TBAF) followed by quenching with acetic anhydride gave (1R,4R)-9 (83\%). Transformation of (1R,4R)-9 into (1R,4R)-7a and (1R,4R)-7b was done as shown in eqn. (2) and the ee obtained was $\geq 98 \%$. ${ }^{19}$

C onclusion

All four stereoisomers of biologically interesting 4-amino-cyclohex-2-enols have been prepared in enantiomerically pure form by palladium(0)-catalysed reactions from the same starting material, (-)-cis-(1R,4S)-4-acetoxycyclohex-2-enol (-)-2a.

Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N \mathrm{MR}$ spectra were recorded for CDCl_{3} solutions at 300 or 400 and 75.4 or 100.6 M Hz , respectively. ${ }^{19} \mathrm{~F}$ N M R spectra were recorded for CDCl_{3} solutions at 376.3 M Hz . Chemical shifts are reported in ppm with CDCl_{3} as internal standard (7.26 for ${ }^{1} \mathrm{H}$ and 77.00 ppm for ${ }^{13} \mathrm{C}$) and coupling constants (J) are given in Hz . A ssignment of ${ }^{13} \mathrm{C}$ was done with HETCOR and COSY experiments. M ass spectra were recorded on a

Finnigan M AT INCOS 50 or a Hewlett Packard 5971 series instrument at 70 eV . Where indicated, mass spectra were recorded with pneumatically assisted electrospray mass spectrometry (ES-M S) on a M icromass VG Platform apparatus using direct inlet of a solution in acetonitrile or with an LCcolumn (K romasil $100 \times 4.6 \mathrm{~mm}$, acetonitrile-water gradient with 5 mm formic acid). Optical rotations, recorded in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$ measured at $25.0^{\circ} \mathrm{C}$ on a Perkin-Elmer 241 polarimeter and concentrations are expressed as g $100 \mathrm{ml}^{-1}$ in spectroscopically pure ethanol or methylene dichloride. Elemental analyses were performed by A nalytische Laboratorien, Engelskirchen, Germany. Bis(dibenzylideneacetone)palladium(0) $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ was prepared according to a literature procedure ${ }^{20}$ THF was distilled under nitrogen from sodium benzophenone ketyl. Pyridine and methylene dichloride were distilled under nitrogen from calcium hydride. Benzylamine, diethylamine and triethylamine were distilled from KOH and stored over K OH under nitrogen until used. Thin-layer chromatography (TLC) was run on M erck pre-coated silica gel $60-\mathrm{F}_{254}$ plates. All reactions were carried out in oven-dried glassware and the Pd°-catalysed reactions also under an argon or nitrogen atmosphere unless otherwise stated. Progress of reaction was followed by TLC until judged complete for all reactions. For flash chromatography M erck K ieselgel 60 (230-400 mesh) was used. Enantiomeric excess (ee) was checked with ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR in CDCl_{3} by M osher esterification ${ }^{21}$ for the diethylaminocyclohex-2-enols and by salt formation with optically pure (S)-mandelic acid, ${ }^{22}$ for the 4-benzylamino-cyclohex-2-enols.

G eneral procedure for the Pd^{0}-catalysed aminations exemplified by the synthesis of (\pm)-cis-1-acetoxy-4-benzylaminocyclohex-2ene 10b

To a solution that had been stirred at room temperature (RT) for 20 min containing $\mathrm{Pd}(\mathrm{dba})_{2}(172 \mathrm{mg}, 0.29 \mathrm{mmol}), \mathrm{PPh}_{3}$ ($225 \mathrm{mg}, 0.86 \mathrm{mmol}$), $\mathrm{BnNH}_{2}(737 \mathrm{mg}, 6.87 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}$ $(1.74 \mathrm{~g}, 17.18 \mathrm{mmol})$ in TH F (30 ml) was added the cis-chloro acetate $8(1.00 \mathrm{~g}, 5.73 \mathrm{mmol})$ in THF (10 ml). The reaction mixture was stirred at RT for 8 h and then evaporated. The residue was dissolved in diethyl ether (20 ml) and extracted with 1 m aq. $\mathrm{HCl}(3 \times 50 \mathrm{ml})$. The aqueous phase was charged with fresh ether (80 ml) and the pH was adjusted to >10 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and KOH followed by two more extractions with ether (50 ml). The combined ether extracts were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and concentrated. The crude product was purified on silica (ethyl acetatepentane gradient) to give $\mathbf{1 0 b}(1.14 \mathrm{~g}, 81 \%)$. The silica was first conditioned with $2 \% \mathrm{Et}_{3} \mathrm{~N}$ in pentane (Found for the HCl -salt: $\mathrm{C}, 63.9 ; \mathrm{H}, 7.05$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{CINO}_{2}$: $\mathrm{C}, 63.9 ; \mathrm{H}, 7.15 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3}\right) 1.3-1.5(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 1.58-1.71(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.73-1.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.84-1.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 2.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}$), 3.14-3.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHNHBn}$), 3.85, 3.88 ($2 \mathrm{H}, \mathrm{AB}$-system, J $\mathrm{AB} 13.1, \mathrm{PhCH}_{2}$), 5.13-5.25 ($1 \mathrm{H}, \mathrm{m}$, CHOAC), 5.79 (1 H, ddd, J 10.0, 3.5 and 1.7, olefinic), 6.00 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.1$ and 2.7, olefinic) and 7.21-7.37 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}, 13\right.$ peaks $21.3\left(\mathrm{COCH}_{3}\right), 25.3$ ($\mathrm{CH}_{2} \mathrm{CHOAC}$), $26.1\left(\mathrm{CH}_{2} \mathrm{CHN}\right)$, $51.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 52.3(\mathrm{CHN})$, 67.2 (CHOA C), 126.3 (CH, Ph), 126.9 (olefinic, CHCHOAC), 128.1 (CH, Ph), 128.4 (CH, Ph), 135.4 (olefinic, CHCHN), $140.3(\mathrm{C}, \mathrm{Ph})$ and $170.7(\mathrm{C}=0)$.

(A) Synthesis of the cis-4-aminocyclohex-2-enols

(\pm)-cis-1-A cetoxy-4-diethylaminocyclohex-2-ene 10a. The synthesis was carried out according to the general procedure above. A mounts used were allylic substrate 8 ($300 \mathrm{mg}, 1.718$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(51 \mathrm{mg}, 0.086 \mathrm{mmol}), \mathrm{PPh}_{3}(68 \mathrm{mg}, 0.258$ $\mathrm{mmol}), \mathrm{Et}_{2} \mathrm{NH}(151 \mathrm{mg}, 2.06 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(521 \mathrm{mg}, 5.15 \mathrm{mmol})$ and THF (10 ml); reaction time 16 h ; yield $280 \mathrm{mg}, 77 \%$; $\delta_{\mathrm{H}}(300$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) $1.04\left(6 \mathrm{H}, \mathrm{appt}, \mathrm{J} 7.2, \mathrm{CH}_{3}\right), 1.41-1.61(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.81-1.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.11-$ $2.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$), 2.34-2.61 ($4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), 3.40-3.53(1
$\mathrm{H}, \mathrm{m}, \mathrm{CHNEt}_{2}$), 5.26-5.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc}$), $5.64-5.73(1 \mathrm{H}$, m , olefinic) and $5.67-5.85\left(1 \mathrm{H}, \mathrm{m}\right.$, olefinic); $\delta_{\mathrm{c}}(100.6 \mathrm{M} \mathrm{H} \mathrm{z}$; $\mathrm{CDCl}_{3}, 10$ peaks) $14.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right), 22.3$ $\left(\mathrm{CH}_{2} \mathrm{CHN}\right), 28.3\left(\mathrm{CH}_{2} \mathrm{CHOAC}\right), 44.1\left(\mathrm{NCH}_{2}\right), 56.4(\mathrm{CHN})$, 70.2 (CHOAC), 129.2 (olefinic, CHCHN), 134.8 (olefinic, CHCHOAC) and $170.8(\mathrm{C}=0)$.
cis-(1S,4R)-1-A cetoxy-4-diethylaminocyclohex-2-ene
($\mathbf{1 S}, \mathbf{4 R}$)-10a. The synthesis was carried out according to the general procedure. A mounts used were allylic substrate 16 (616 $\mathrm{mg}, 1.718 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(51 \mathrm{mg}, 0.086 \mathrm{mmol}), \mathrm{PPh}_{3}(68 \mathrm{mg}$, $0.258 \mathrm{mmol}), \mathrm{Et}_{2} \mathrm{NH}(151 \mathrm{mg}, 2.06 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(521 \mathrm{mg}, 5.15$ mmol) and THF (20 ml); reaction time 2 h ; yield $298 \mathrm{mg}, 82 \%$. Allylic substrate 17 ($485 \mathrm{mg}, 1.473 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{dba})_{2}(44 \mathrm{mg}$, 0.074 mmol), $\mathrm{PPh}_{3}(58 \mathrm{mg}, 0.221 \mathrm{mmol}), \mathrm{Et}_{2} \mathrm{NH}$ ($183 \mathrm{mg}, 2.50$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(447 \mathrm{mg}, 4.42 \mathrm{mmol})$ and THF (20 ml); reaction time 6 h ; yield $228 \mathrm{mg}, 73 \%$. Spectral data are in accordance with the racemate.
(\pm)-cis-4-D iethylaminocyclohex-2-enol 6a. The amino acetate $10 \mathrm{a}(250 \mathrm{mg}, 1.19 \mathrm{mmol}$) was dissolved in a stirred solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(9 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(4: 1 ; 10 \mathrm{ml})$ at RT. A fter 5 h the mixture was evaporated, diluted with diethyl ether $(100 \mathrm{ml})$, washed with water (10 ml) and brine (10 ml), dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and evaporated. Purification of the residue on silica (gradient of diethyl ether-pentane 60:40 to ethyl acetate$\mathrm{MeOH} 90: 10$) gave the title compound 6 a ($191 \mathrm{mg}, 95 \%$) (Found for the H Cl-salt: C, 58.3; $\mathrm{H}, 9.7$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{CINO}$: C, $58.4 ; \mathrm{H}, 9.8 \%)$; $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.04\left(6 \mathrm{H}, \mathrm{app} \mathrm{t}, \mathrm{CH}_{3}\right)$, 1.56-1.71 ($3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $5-\mathrm{H}$), 1.79-1.89 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 1.96-2.14 (1 H, br s, OH), 2.38-2.65 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.26-3.33 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$), 4.07-4.12 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$) and 5.79-5.91 (2 H , $\mathrm{m}, 5-\mathrm{H}$ and $6-\mathrm{H}) ; \delta_{\mathrm{c}}\left(75.4 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}, 8\right.$ peaks) $14.2\left(\mathrm{CH}_{3}\right)$, $17.9\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 44.2\left(\mathrm{NCH}_{2}\right), 56.7\left(\mathrm{CHNEt}_{2}\right), 63.4$ (CH OA C), 130.2 (CH, olefinic), 135.4 (CH , olefinic); $v_{\text {max }} / \mathrm{cm}^{-1}$ 3346 (OH, br), 2967, 2937, 2871, 1386 and 1066.
(-)-cis-(1S,4R)-4-D iethylaminocyclohex-2-enol (-)-(1S,4R)6a. Starting from (1S,4R)-10a and applying the same conditions as for the preparation of (\pm)-6a yielded (-)-6a. Spectral data are in accordance with (\pm)-6a; [$\alpha]_{D^{25}}-70$ (c 1.91 in EtOH); ee $\geq 98 \%$.
(+)-cis-(1R,4S)-4-D iethylaminocyclohex-2-enol (+)-(1R,4S)6 a . See general procedure according to $\mathbf{1 0 b}$. Allylic substrate 19 $(802 \mathrm{mg}, 2.16 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(64 \mathrm{mg}, 0.108 \mathrm{mmol}), \mathrm{PPh}_{3}$ $(85 \mathrm{mg}, 0.324 \mathrm{mmol}), \mathrm{Et}_{2} \mathrm{NH}(174 \mathrm{mg}, 2.38 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(656$ $\mathrm{mg}, 6.48 \mathrm{mmol}$) and THF (25 ml) for 15 h yielded cis-($1 \mathrm{R}, 4 \mathrm{~S}$)-4-diethylamino-1-(tetrahydropyran-2-yloxy)cyclohex-2-ene (373 $\mathrm{mg}, 68 \%$). The TH P group in the latter product ($299 \mathrm{mg}, 1.18$ mmol) was removed with toluene-p-sulfonic acid ($190 \mathrm{mg}, 1.00$ mmol) in MeOH (5 ml) at RT. A fter 12 h the mixture was evaporated and treated with diethyl ether (100 ml) and 1 m $\mathrm{NaOH}(10 \mathrm{ml})$. A fter extraction the organic phase was washed with water (10 ml) and brine (10 ml), dried ($\mathrm{M} \mathrm{gSO}_{4}$) and evaporated. Purification of the residue on silica (gradient of diethyl ether-pentane, $60: 40$ to ethyl acetate $\mathrm{MeOH}, 90: 10$) gave the title compound (+)-(1R,4S)-6a (161 mg, 81\%; totally 55% in two steps). Same spectral data as for (\pm)-6a; $[a]_{D}^{25}+66$ (c 1.70 in EtOH); ee $\geq 98 \%$.
(\pm)-cis-1-A cetoxy-4-benzylaminocyclohex-2-ene 10b. This compound is described above under the general procedure
cis-(1S,4R)-1-A cetoxy-4-benzylaminocyclohex -2-ene (1S,4R)10b. See general procedure for $(\pm)-10 b . \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(87 \mathrm{mg}, 0.075$ mmol) was used instead of $\mathrm{Pd}(\mathrm{dba})_{2}$ for the allylic substrate 16 ($539 \mathrm{mg}, 1.504 \mathrm{mmol}$); amounts of reactants used were PPh_{3} $(20 \mathrm{mg}, 0.076 \mathrm{mmol}), \mathrm{BnNH}_{2}(161 \mathrm{mg}, 1.503 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(340$ $\mathrm{mg}, 3.36 \mathrm{mmol})$ and THF (17 ml); reaction time 2 h ; yield 292 $\mathrm{mg}, 79 \%$. For the allylic substrate $17(311 \mathrm{mg}, 0.95 \mathrm{mmol})$ the following amounts were used: $\mathrm{Pd}(\mathrm{dba})_{2}(28 \mathrm{mg}, 0.047 \mathrm{mmol})$, $\mathrm{PPh}_{3}(38 \mathrm{mg}, 0.142 \mathrm{mmol}), \mathrm{BnNH}_{2}(311 \mathrm{mg}, 2.83 \mathrm{mmol})$ and THF (17 ml); reaction time 2 h ; yield $163 \mathrm{mg}, 70 \%$. Spectral data were in accordance with those of racemic 10b.
(\pm)-cis-4-Benzylaminocyclohex-2-enol 6b. Prepared from amino acetate 10b using the same hydrolysis conditions as for
the preparation of $\mathbf{6 a}$ in 98% yield; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.56$ 1.88 ($6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}, \mathrm{OH}, \mathrm{NH}$), 3.09-3.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$ $\mathrm{HBn}), 3.83,3.87$ ($2 \mathrm{H}, \mathrm{AB}$-system, J AB $13.0, \mathrm{PhCH}_{2} \mathrm{NH}$), 4.094.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), 5.81-5.89 ($2 \mathrm{H}, \mathrm{m}$, olefinic) and 7.227.34 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}, 11\right.$ peaks) $24.9\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right)$, $51.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 52.3(\mathrm{CHN}), 64.7(\mathrm{CHOH}), 127.0$ (CH, Ph), 128.1 (CH , Ph), 128.4 (CH , Ph), 130.7 (CH, olefinic), 133.1 (CH , olefinic) and 140.3 (C, Ph).
(-)-cis-(1S,4R)-4-Benzylaminocyclohex-2-enol (-)-(1S,4R)6 b. This compound was prepared as abovefor $6 \mathbf{b}$ butstarting with ($1 \mathrm{~S}, 4 \mathrm{R}$)-10b. Spectral data are as for (\pm)-6b; $[a]_{\mathrm{D}}^{25}-4.3$ (c 0.845 in EtOH); ee $\geq 98 \%$.
(+)-cis-(1R,4S)-4-B enzylaminocyclohex-2-enol (+)-(1R,4S)6b. See general procedure for 10b. Allylic substrate 19 (557 mg , $1.50 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(45 \mathrm{mg}, 0.075 \mathrm{mmol}), \mathrm{PPh}_{3}(50 \mathrm{mg}, 0.188$ $\mathrm{mmol}), \mathrm{BnNH}_{2}(160 \mathrm{mg}, 1.50 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(340 \mathrm{mg}, 3.36$ mmol) in THF (12 ml) for 20 h gave cis-($1 \mathrm{R}, 4 \mathrm{~S}$)-4-benzyl-amino-1-(tetrahydropyran-2-yloxy)cyclohex-2-ene (426 mg, 94\%). The TH P group was removed according to the preparation of $(+)-(1 R, 4 S)-6 \mathrm{a}$ in 69% yield (65% in two steps); spectral data as for (\pm)-6b; $[a]_{D}^{25}+4.2$ (c 1.79 in EtOH); ee $\geq 98 \%$.

(B) Synthesis of the trans-4-aminocyclohex-2-enols

(\pm)-trans-1-A cetoxy-4-diethylaminocyclohex-2-ene 11a. The general procedure described for 10b was used but $25 \mathrm{~mol} \%$ of LiCl was added to the reaction mixture together with the catalyst, phosphine and amine Allylic substrate 9 ($131 \mathrm{mg}, 0.750$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(22 \mathrm{mg}, 0.037 \mathrm{mmol}), \mathrm{PPh}_{3}(40 \mathrm{mg}, 0.153$ $\mathrm{mmol})$, LiCl ($8 \mathrm{mg}, 0.189 \mathrm{mmol}$), HNEt $(165 \mathrm{mg}, 2.26 \mathrm{mmol})$ in THF (7.5 ml) for 20 h yielded 11a ($113 \mathrm{mg}, 71 \%$); $\delta_{\mathrm{H}}(300$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) $1.04\left(6 \mathrm{H}, \mathrm{appt}\right.$, J 7.2, CH_{3}), 1.41-1.61 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.81-1.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.11-2.20$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.34-2.61 ($4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), $3.40-3.53(1 \mathrm{H}, \mathrm{m}$, CHNEt), 5.26-5.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc}$), $5.64-5.73(1 \mathrm{H}, \mathrm{m}$, olefinic) and $5.76-5.85\left(1 \mathrm{H}, \mathrm{m}\right.$, olefinic); $\delta_{\mathrm{c}}(100.6 \mathrm{M} \mathrm{Hz}$; $\mathrm{CDCl}_{3}, 10$ peaks) $14.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right), 22.3$ $\left(\mathrm{CH}_{2} \mathrm{CHN}\right), 28.2\left(\mathrm{CH}_{2} \mathrm{CHOAC}\right), 44.1\left(\mathrm{NCH}_{2}\right), 56.4(\mathrm{CHN})$, 70.1 (CHOAc), 129.2 (olefinic, CHCHN), 134.8 (olefinic, CHCHOAC) and 170.8 ($\mathrm{C}=0$); m/z (LC prior to ES-M S) 212 ($\left.[\mathrm{M}+\mathrm{H}]^{+}, 82 \%\right), 139$ (66%), 79 (7%), 61 (13%) and 60 (100%).

Spectroscopic data for the corresponding γ-product to 11a. (\pm)-trans-4-A cetoxy-3-diethylaminocyclohexene; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 1.01\left(6 \mathrm{H}, \mathrm{app} \mathrm{t}, \mathrm{J} 7.1, \mathrm{CH}_{3}\right), 1.56-1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.86-1.96(1 H, m, CH 2), $2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.07-2.20(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 2.53\left(4 \mathrm{H}, \mathrm{app} \mathrm{q}, \mathrm{NCH}_{2}\right), 3.36-3.43(1 \mathrm{H}, \mathrm{m}$, CHNEt 2), 5.00 (1 H, ddd, J 11.1, 7.7, 3.6, CHOA c), $5.53-5.60$ ($1 \mathrm{H}, \mathrm{m}$, olefinic) and 5.74-5.82 ($1 \mathrm{H}, \mathrm{m}$, olefinic); $\delta_{\mathrm{c}}(100.6$ $\mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}, 10$ peaks) 14.5, 21.5, 24.0, 27.6, 44.4, 60.4, 70.9, 127.7, 128.9 and 170.6.
trans-(1S,4S)-1-A cetoxy-4-diethylaminocyclohex-2-ene
$(\mathbf{1 S}, \mathbf{4 S})$-11a. The same procedure was used as for racemic 11a but starting from (-)-9. Spectral data are in accordance with the racemate.
trans-(1R ,4R)-1-A cetox y-4-diethylaminocyclohex-2-ene
(1R,4R)-11a. The same procedure was used as for racemic 11a but starting from (+)-9. Spectral data are in accordance with the racemate.
(\pm)-trans-4-D iethylaminocyclohex-2-enol 7a. This substance was prepared from amino acetate 11a using the same hydrolysis conditions as for 6 a in 96% yield; $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 1.01$ ($6 \mathrm{H}, \operatorname{app} \mathrm{t}, \mathrm{CH}_{3}$), 1.32-1.53 (2 H, m, 6-H), 1.76-1.89 (1 H, m, 5-H), 2.06-2.18 (1 H , m, 5-H), 2.31-2.59 ($4 \mathrm{H}, \mathrm{m}, \mathrm{N} \mathrm{CH} \mathrm{I}_{2}$), 2.60$2.80(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.37-3.47(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.16-4.28(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H})$ and $5.63-5.79(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $6-\mathrm{H}) ; \delta_{\mathrm{c}}(100.6 \mathrm{M} \mathrm{Hz}$ $\mathrm{CDCl}_{3}, 8$ peaks) $14.1\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 44.1$ (NCH_{2}), $56.6\left(\mathrm{CHNEt}_{2}\right), 67.3$ (CHOAC), 132.4 (CH, olefinic), 133.6 (CH, olefinic); m/z (LC prior to ES-M S) 170 ($[\mathrm{M}+\mathrm{H}]^{+}$, 100%); $v_{\text {max }} / \mathrm{cm}^{-1} 3331$ (OH, br), 2968, 2935, 2864, 1451, 1384 and 1065 .
(-)-trans-($\mathbf{1 S}, 4 \mathrm{~S}$)-4-D iethylaminocyclohex-2-enol (-)($\mathbf{1 S}, 4 \mathrm{~S}$)-7a. Preparation as for (\pm)-7a but with ($1 \mathrm{~S}, 4 \mathrm{~S}$)-11a as the substrate Same spectral data as for (\pm)-7a; $[a]_{0}^{25}-102$ (c 1.165 in EtOH); ee $\geq 98 \%$.
(+)-trans-(1R ,4R)-4-D iethylaminocyclohex-2-enol (+)($1 \mathrm{R}, 4 \mathrm{R}$)-7a. Preparation as for (\pm)-7a but with ($1 \mathrm{R}, 4 \mathrm{R}$)-11a as the substrate. Same spectral data as for (\pm)-7a; $[a]_{D}^{25}+98$ (c 0.600 in EtOH).
(\pm)-trans-1-A cetox y-4-benzylaminocyclohex-2-ene 11b. The general procedure described for 10b was used but $25 \mathrm{~mol} \%$ of LiCl was added to the reaction mixture together with the catalyst, phosphine and amine. A mounts used were trans-chloro acetate $9(720 \mathrm{mg}, 4.13 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(124 \mathrm{mg}, 0.21 \mathrm{mmol})$, $\mathrm{PPh}_{3}(162 \mathrm{mg}, 0.62 \mathrm{mmol}), \mathrm{LiCl}(44 \mathrm{mg}, 1.03 \mathrm{mmol}), \mathrm{BnN} \mathrm{H}_{2}$ ($531 \mathrm{mg}, 4.95 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.25 \mathrm{~g}, 12.37 \mathrm{mmol}$) in THF (36 ml). The reaction mixture was stirred at RT for 20 h to give, on work-up, the amino acetate $\mathbf{1 1 b}$ ($770 \mathrm{mg}, 76 \%$); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right)$ 1.45-1.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.99-2.19 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}$), $2.58(1 \mathrm{H}, \mathrm{br}$ s, NH), 3.27-3.33(1 H, m, CH NHBn), 3.83, 3.86 ($2 \mathrm{H}, \mathrm{AB}$-system, J $\mathrm{AB}_{\mathrm{B}} 13.2, \mathrm{PhCH}_{2} \mathrm{NH}$), 5.28-5.34 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOA}$), 5.72 (1 H, dddd, J 10.4, 3.2, 2.0, 1.2, olefinic, CH CH OA C), 5.93 (1 H , dddd, J 10.4, 2.8, 1.6, 1.2, olefinic, CHCHN) and 7.20-7.45 (5 H, m, Ph); $\delta_{\mathrm{C}}(100.6 \mathrm{M} \mathrm{Hz}$; $\mathrm{CDCl}_{3}, 13$ peaks) $21.2\left(\mathrm{COCH}_{3}\right), 26.9\left(\mathrm{CH}_{2} \mathrm{CHOAc}\right), 27.3$ ($\mathrm{CH}_{2} \mathrm{CHN}$), $50.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 52.2(\mathrm{CHN}$), 69.1 (CHOAC), 127.0 (CH, Ph), 127.9 (olefinic, CHCH OAc), 128.1 (CH, Ph), 128.4 (CH, Ph), 133.8 (olefinic, CHCHN), 139.8 (C, Ph) and 170.6 (C=O); m/z (LC prior to ES-M S) 246 ([M + H $\left.]^{+}, 100 \%\right), 139$ (54\%), 108 (3\%), 79 (5\%) and 61 (6\%).
Spectroscopic data for the corresponding γ-product to 11 b : (\pm)-trans-4-acetoxy-3-benzylaminocyclohexene; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 1.65-2.05 (3 H , br s and two m overlapping, $\mathrm{CH}_{2}, \mathrm{NH}$), 2.10-2.19 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.25-3.33(1 H , m, CHNH), 3.83, 3.88 ($2 \mathrm{H}, \mathrm{AB}$-system, J $\mathrm{J}_{\mathrm{AB}} 13.3, \mathrm{PhCH}_{2} \mathrm{NH}$), $4.99(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 8.9$, 6.3 and 3.1, CHOAc), 5.62-5.69 (1 H , m, olefinic), $5.76-5.84$ ($1 \mathrm{H}, \mathrm{m}$, olefinic) and $7.18-7.38$ ($5 \mathrm{H}, \mathrm{m}$, aromatic); $\delta_{\mathrm{c}}(100.6$ $\mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3,13$ peaks) 21.4, 23.2, 25.2, 50.5, 56.5, 72.6, 126.9, 127.1, 128.1, 128.3, 128.8, 140.6 and 170.8 .
trans-(1S,4S)-1-A cetoxy-4-benzylaminocyclohex -2-ene
($\mathbf{1 S}, \mathbf{4 S}$)-11b. The same procedure was used as for racemic 11b but starting from (-)-9. Spectral data are in accordance with the racemate.
trans-(1R ,4R)-1-A cetoxy-4-benzylaminocyclohex-2-ene
($\mathbf{1 R}, \mathbf{4 R}$)-11b. The same procedure was used as for racemic 11b but starting from (+)-9. Spectral data are in accordance with the racemate.
(\pm)-trans-4-Benzylaminocyclohex-2-enol 7b. The title compound was prepared from amino acetate 11b using the same hydrolysis conditions as for 6a in 98% yield; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right)$ 1.36-1.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.57-1.68 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$ and $\mathrm{OH}), 2.03-2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.24-3.28(1 \mathrm{H}, \mathrm{m}, \mathrm{CHNH})$, 3.82, 3.85 ($2 \mathrm{H}, \mathrm{AB}$-system, J ${ }_{\text {AB }} 13.0, \mathrm{PhCH}_{2} \mathrm{NH}$), 4.23-4.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), 5.75-5.83 ($2 \mathrm{H}, \mathrm{m}$, olefinic) and 7.22-7.34 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}, 11\right.$ peaks) $27.9\left(\mathrm{CH}_{2}\right), 31.2$ $\left(\mathrm{CH}_{2}\right), 50.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 52.7(\mathrm{CHN}), 66.8(\mathrm{CHOH}), 127.1(\mathrm{CH}$, Ph), 128.2 (CH , Ph), 128.5 (CH , Ph), 132.0 (CH , olefinic), 132.1 (CH , olefinic) and 140.1 (C, Ph).
(-)-trans-(1S,4S)-4-B enzylaminocyclohex-2-enol (-)($\mathbf{1 S}, \mathbf{4 S}$)-7b. Preparation as for (\pm)-7b but with ($1 \mathrm{~S}, 4 \mathrm{4S}$)-11b as the substrate. Same spectral data as for (\pm)-7b; $[a]_{D}^{25}-122$ (c 1.773 in EtOH); ee $\geq 98 \%$.
(+)-trans-(1R ,4R)-4-B enzylaminocyclohex-2-enol (+)($\mathbf{1 R}, \mathbf{4 R}$)-7b. Preparation as for (\pm)-7b but with ($1 \mathrm{R}, 4 \mathrm{R}$)-11b as the substrate Same spectral data as for (\pm)-7b; $[a]_{D}^{25}+120$ (c 1.394 in EtOH); ee $\geq 98 \%$.

(C) Synthesis of the allylic substrates

(\pm)-cis-4-A cetoxycyclohex-2-enol (\pm)-2a. 1,4-D iacetoxycyclo-hex-2-ene ${ }^{6}$ ($17.39 \mathrm{~g}, 87.72 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(606 \mathrm{mg}, 4.39$ mmol) were dissolved in methanol-water ($4: 1 ; 150 \mathrm{ml}$) and the
solution stirred at RT for 40 min . It was then neutralised with 1 м aq. HCl and the methanol was removed in vacuo. The aqueous phase was saturated with NaCl and extracted with EtOAc and the extract was dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and concentrated. The residue was separated on silica (gradient EtOA c-pentane) to give $2 \mathrm{a}(8.118 \mathrm{~g}, 59 \%)$. The spectral data were consistent with those previously reported. ${ }^{4}$
(-)-cis-(1R,4S)-4-A cetoxycyclohex-2-enol (-)-(1R,4S)-2a. Preparation according to ref. 4.
cis-1-A cetoxy-4-chlorocyclohex-2-ene 8. The preparation was carried out as in ref. 5 and the spectral data were in accord with those reported therein.
(\pm)-trans-1-A cetox y-4-chlorocyclohex-2-ene 9. To N-chlorosuccinimide ($806 \mathrm{mg}, 6.04 \mathrm{mmol}$) in THF (7 ml) under nitrogen was added a solution of $\mathrm{PPh}_{3}(1.575 \mathrm{~g}, 6.01 \mathrm{mmol})$ in THF (7 $\mathrm{ml})$. A slightly exothermic reaction ensued. A fter the reaction mixture had cooled to room temperature the alcohol 2a (632 $\mathrm{mg}, 4.047 \mathrm{mmol}$) dissolved in THF (6 ml) was added to it; the mixture was then stirred at room temperature for 15 h . The solvent was removed and the residue was dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified on silica (diethyl ether-pentane, 5: 95) to give the title compound 9 ($684 \mathrm{mg}, 97 \%$). A bout 4% of the corresponding $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-product was formed in the reaction. Spectral data for 9 were in accord with those reported in ref. 5.
(-)-trans-(1S,4S)-1-A cetox y-4-chlorocyclohex-2-ene (-)$\mathbf{(1 5 , 4 S) - 9}$. This compound was prepared in the same way as for the racemic compound 9 starting from (-)-2a. [a] $]_{b}^{25}-395$ (c 1.01 in EtOH); 2.5% of the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-product contaminated the product.
(+)-trans-(1R , 4R)-1-A cetox y-4-chlorocyclohex-2-ene (+)-(1R,4R)-9. To a solution of compound 20c ($594 \mathrm{mg}, 2.406$ mmol) in TH F (15 ml) was added tetrabutylammonium fluoride (TBAF) (1 m soln. in THF, $2.53 \mathrm{ml}, 2.53 \mathrm{mmol}$) at room temperature. A fter 3 h , acetic anhydride ($2.3 \mathrm{ml}, 24.4 \mathrm{mmol}$) was added to the reaction mixture which was then stirred for an additional 12 h . It was then evaporated and the residue was separated on silica (gradient ether-pentane 5:95-15:85) to give the title compound (+)-9 ($347 \mathrm{mg}, 83 \%$). Spectral data were in accord with those reported in ref. 5; $[a]_{0}^{25}+415$ (c 0.89 in EtOH).
cis-(1R,4S)-4-A cetoxycyclohex-2-enyl diphenylphosphinate (1R,4S)-16. The title compound was synthesized from the alcohol (-)-2a ($1.00 \mathrm{~g}, 6.32 \mathrm{mmol}$) according to procedure A reported in ref. 14 (reaction time 30 h) except that in the aqueous work-up the organic extract was washed with saturated copper sulfate ($3 x$), water ($1 \times$) and brine ($1 \times$) before being dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$. A fter evaporation of the extract the crude product was filtered through basic alumina eluting with diethyl ether. Removal of the ether afforded a colourless oil of the title compound 16 ($2.02 \mathrm{~g}, 89 \%$) which was sufficiently pure for the next step; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.80-1.94\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.01-$ $2.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.06\left(3 \mathrm{H}, \mathrm{s} \mathrm{COCH}_{3}\right), 4.84-4.91[1 \mathrm{H}, \mathrm{m}$, CHOP(O)Ph ${ }^{2}$, 5.15-5.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc}$), 5.83-5.96 ($2 \mathrm{H}, \mathrm{m}$, olefinic), $7.44(4 \mathrm{H}, \mathrm{o}-\mathrm{Ph}), 7.51(2 \mathrm{H}, \mathrm{m}, \mathrm{p}-\mathrm{Ph}), 7.82(4 \mathrm{H}$, tdd, $\left.{ }^{2} \mathrm{~J}_{\text {нр }} 12.6, \mathrm{~J}_{\text {нн }} 8.2,1.4,0-\mathrm{Ph}\right) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}, 13\right.$ peaks) $21.1\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right), \quad 24.6\left(\mathrm{CH}_{2} \mathrm{CHOAC}\right), 26.9\left(\mathrm{~d},{ }^{3}\right) \mathrm{cp} 3.8$, $\mathrm{CH}_{2} \mathrm{CHOP}$), 67.0 (CHOAc), 69.0 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{cp}} 6.0, \mathrm{CH}$ OP), 128.4 (d, ${ }^{3}$ J cp 12.2, aromatic, CH) 129.9 (olefinic, C HCHOA C), 131.5 (d, ${ }^{2}{ }^{2}$ cp 17.5, aromatic, CH), 131.5 ($\mathrm{d},{ }^{3} \mathrm{~J}$ cp 3.0 , olefinic, CHCH OP), 131.87 ($\mathrm{d},{ }^{1}$) cp 136.6, aromatic, C), 131.92 ($\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{cp}}$ 137.3, aromatic, C), 132.1 ($\mathrm{d},{ }^{4} \mathrm{~J}$ cp 1.5, aromatic, CH) and 170.2 ($\mathrm{C}=0$); $\left.\mathrm{m} / \mathrm{z}\left(\mathrm{NH}_{4} \mathrm{CO}_{2} \text { added prior to ES-M S) } 379 \text { ([M + N a }\right]^{+}, 5 \%\right), 374$ ($\left.\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 4 \%\right), 357\left(\left[\mathrm{M}+\mathrm{H}^{+}, 50 \%\right), 297\right.$ (3\%), 219 (11\%), 139 (100%) and 79 (6\%).
cis-(1R,4S)-4-A cetoxycyclohex-2-enyl 2,4-dichlorobenzoate (1R,4S)-17. A solution of cis-4-acetoxycyclohex-2-enol (-)-2a ($953 \mathrm{mg}, 6.10 \mathrm{mmol}$), 2,4-dichlorobenzoic acid ($1.72 \mathrm{~g}, 9.00$ $\mathrm{mmol})$, dicyclohexylcarbodiimide (DCC) ($1.86 \mathrm{~g}, 9.01 \mathrm{mmol}$) and p-dimethylaminopyridine (D M AP) ($16 \mathrm{mg}, 0.13 \mathrm{mmol}$) in
methylene dichloride (50 ml) was stirred at RT for 3 h . Diethyl ether (50 ml) was added to the reaction mixture which was then washed with cold 5% aq. $\mathrm{HCl}(2 \times 25 \mathrm{ml})$ and saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 25 \mathrm{ml})$, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and concentrated. The crude product was filtered through basic alumina and purified on silica using M PLC (EtOAc-CH $\mathrm{Cl}_{2}, 1: 1$, gradient in pentane) to give the title compound $17(1.61 \mathrm{~g}, 80 \%)$; $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 1.90-2.06\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right)$, 5.23-5.33 (1 H , m, CH OA c), 5.39-5.51 [1 H , m, CHOC (O)A r], 5.94-6.05 ($2 \mathrm{H}, \mathrm{m}$, olefinic), 7.29 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4$ and $2.0, \mathrm{ArH}$), $7.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0, \mathrm{ArH})$ and $7.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4, \mathrm{ArH})$; $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}, 15\right.$ peaks) $21.1\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right)$, $25.0\left(\mathrm{CH}_{2}\right), 67.4$ (CHOAC), 68.6 [CHOC(O)Ar], 126.9 (aromatic, CHCHCCI), 128.4 (aromatic, C), 129.3 [olefinic, $\mathrm{CHCHOC}(\mathrm{O}) \mathrm{Ar}$], 130.9 (aromatic, CCICHCCI), 131.2 (olefinic, CHCHOAc), 132.4 (aromatic, CCHCH), 134.8 (aromatic, C), 138.2 (aromatic, C), $164.2(\mathrm{C}=0$) and 170.4 ($\mathrm{C}=0$); m/z 273 (0.6\%), 271 (5\%), 269 (7\%), 177 (12%), 175 (65%), 173 (100%), 149 (2\%), 147 (8\%), 145 (12\%), 139 (12%), 96 (43%) and 79 (26\%); [a] $]_{D}^{25}+56$ (c 1.16 in EtOH).
(+)-cis-(1S,4R)-4-(Tetrahydropyran-2-yloxy)cyclohex-2-enol (+)-($\mathbf{1 S}, \mathbf{4 R}$)-18a. To (-)-2a ($535 \mathrm{mg}, 3.38 \mathrm{mmol}$) dissolved in methylene dichloride (30 ml) was added dihydropyran (DHP) ($425 \mathrm{mg}, 5.05 \mathrm{mmol}$) and pyridinium toluene p-sulfonate (PPTS) ($85 \mathrm{mg}, 0.338 \mathrm{mmol}$). The solution was stirred at RT for 4 h , after which it was diluted with diethyl ether (100 ml), washed with brine-water ($1: 1 ; 20 \mathrm{ml}$) and concentrated. The resulting crude product was dissolved in methanol (5 ml) and treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(23 \mathrm{mg}, 0.17 \mathrm{mmol})$ in water (1 ml). A fter being stirred at RT for 5 h the reaction mixture was diluted with water (10 ml) and then concentrated by evaporation of most of the methanol. The aqueous phase was extracted with diethyl ether ($3 \times 50 \mathrm{ml}$) and the combined organic fractions were then washed with brine (20 ml), dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and concentrated. Purification of the residue on silica (diethyl ether-pentane, $60: 40$) gave the title compound 18a ($650 \mathrm{mg}, 98 \%$) (Found: $\mathrm{C}, 65.9$; $\mathrm{H}, 8.8$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}$: C, $66.6 ; \mathrm{H}, 9.15 \%)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.48-1.94(10 \mathrm{H}, \mathrm{m}, 5-$ $\mathrm{H}, 6-\mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}$ and $10-\mathrm{H}$), $3.45-3.54$ ($1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$), 3.86$3.97(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 4.08-4.18(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $7-\mathrm{H}), 4.72-$ $4.78(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and $5.88-5.91(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H})$; $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 19.5$ (C-9), 24.3 and 26.2 (C-5), 25.3 and 25.4 (C-10), 28.1 and 28.5 (C-6), 30.9 and 31.0 (C-8), 62.4 and 62.5 (C-11), 65.1 and 65.2 (C-1), 68.9 and 70.0 (C-4), 96.8 and 97.8 (C-7), 130.1 and 131.3 (olefinic), 132.5 and 132.6 (olefinic); $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+},>0.5 \%\right) 97$ (51\%), 85 (90\%), 79 (63\%), 67 (64\%), 57 (65%) and 55 (100%); $v_{\text {max }} / \mathrm{cm}^{-1} 3404$ (OH , br), 2942, 2869, 1133, 1074, 1032 and 1000; [$a]_{D}^{25}+38.1$ (c 0.91 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
cis-4-Pivaloyloxycyclohex-2-enol 18b. To a solution of the hydroxyacetate 2a ($1.00 \mathrm{~g}, 6.402 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(3.24 \mathrm{~g}, 32.01$ $\mathrm{mmol})$ and DMAP ($22 \mathrm{mg}, 0.180 \mathrm{mmol}$) in THF (25 ml) was added pivaloyl chloride ($1.58 \mathrm{ml}, 12.81 \mathrm{mmol}$). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 24 h after which the solvent was removed and ether (60 ml) was added to the residue. The solution was washed with 1 м hydrochloric acid ($\times 3$), sat'd aqueous NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Separation of the residue on silica (diethyl ether-pentane, $3: 97$ then 5:95) yielded cis-4-acetoxy-1-pivaloyloxycyclohex-2-ene ($1.485 \mathrm{~g}, 95 \%$); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 1.19\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.77-1.96\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.07(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{COCH}_{3}\right), 5.15-5.24(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOAC}, \mathrm{CHOPiv})$ and 5.815.91 ($2 \mathrm{H}, \mathrm{m}$, olefinic); $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}, 11\right.$ peaks) 21.3 , 24.8, 24.9, 27.1, 38.7, 66.9, 67.4, 130.0, 130.5, 170.5, 178.0. Selective hydrolysis of the acetate ($1.112 \mathrm{~g}, 4.627 \mathrm{mmol}$) was performed with a 10% solution of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}(133 \mathrm{mg}$, $0.465 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(4: 1,23 \mathrm{ml})$ at RT for 9 h . A fter removal of the methanol from the mixture it was extracted with ether and the extract dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the title compound 18b ($839 \mathrm{mg}, 92 \%$); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$;
$\left.\mathrm{CDCl}_{3}\right) 1.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.62-1.98\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{OH}\right), 4.14-$ 4.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), $5.10-5.24$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOPiv}$), $5.73-5.84$ ($1 \mathrm{H}, \mathrm{m}$, olefinic) and 5.90-6.00 ($1 \mathrm{H}, \mathrm{m}$, olefinic); $\delta_{\mathrm{c}}(100.6$ $\mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}, 9$ peaks) 24.9 (C-5), 27.1 (C-9), 28.1 (C-6), 38.7 (C-8), 65.3 (C-1), 66.9 (C-4), 128.0 (C-3), 134.5 (C-2) and 178.1 (C-7); m/z 180 (2\%), 113 (3\%), 97 (23\%), 96 (67%), 95 (14\%), 85 (21\%), 79 (21\%) and 57 (100%).
cis-(1S,4R)-4-(tert-B utyIdimethylsilyloxy)cyclohex-2-enol
($\mathbf{1 S}, \mathbf{4 R}$)-18c. To a stirred solution of $\mathbf{2 1 c}(3.256 \mathrm{~g}, 12.039 \mathrm{mmol})$ was added $\mathrm{KOH}(135 \mathrm{mg}, 2.408 \mathrm{mmol})$ in methanol (40 ml). The reaction mixture was stirred at RT for 4 h after which the solvent was removed and the residue was treated with water (30 ml) and diethyl ether (60 ml); the layers were separated and the pH of the aqueous layer was adjusted to 7 with 1 m hydrochloric acid; it was then further extracted with ether. The combined organic extracts were dried $\left(\mathrm{M} \mathrm{SOO}_{4}\right)$ and concentrated in vacuo to give the product ($2.698 \mathrm{~g}, 98 \%$) which was pure enough for the next step; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.073\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $0.076(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH} 3), 0.89\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.60-1.90(5 \mathrm{H}$ $\left.\mathrm{m}, 2 \times \mathrm{CH}_{2}, \mathrm{OH}\right), 4.06-4.18(2 \mathrm{H}$, two overlapping $\mathrm{m}, \mathrm{CHOH}$ CH OSi), 5.75 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2$ and 2.4, olefinic) and $5.79(1 \mathrm{H}$, dd, J 10.2 and 3.1 , olefinic); $\delta_{c}\left(100.6 \mathrm{M} \mathrm{Hz}_{\mathrm{CDCl}}^{3}, 10\right.$ peaks) -4.7 (C-7), -4.6 (C-7'), 18.1 (C-8), 25.8 (C-9), 28.2 (C-5), 28.4 (C-6), 64.8 (C-1), 66.3 (C-4), 130.7 (C-2) and 133.9 (C-3); $[a]_{5}^{25}+34$ (c 1.58 in EtOH).
cis-(1S,4R)-4-(Tetrahydropyran-2-yloxy)cyclohex-2-enyl 2,4dichlorobenzoate ($\mathbf{1 S}, \mathbf{4 R}$)-19. A solution of DCC $(1.297 \mathrm{~g}, 6.285$ mmol) and D M A P ($13 \mathrm{mg}, 0.105 \mathrm{mmol}$) in methylene dichloride (10 ml) was added to a stirred solution of $18 \mathrm{a}(1.246 \mathrm{~g}$, 6.285 mmol) and 2,4-dichlorobenzoic acid ($1.200 \mathrm{~g}, 6.285$ mmol) in methylene dichloride (25 ml) at RT. The solution was stirred at RT for 10 h , after which it was diluted with diethyl ether (300 ml). The organic phase was washed with 5% aqueous acetic acid (50 ml), water (20 ml) and brine (20 ml), dried ($\mathrm{M} \mathrm{SO}_{4}$) and concentrated. Purification of the residue on silica (diethyl ether-pentane, $60: 40)$ gavethetitlecompound $19(2.20 \mathrm{~g}$, 87%); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) $1.43-2.07$ ($10 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}, 8-\mathrm{H}$ 9-H and $10-\mathrm{H}), 3.47-3.54(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 3.86-3.94(1 \mathrm{H}, \mathrm{m}$, 11-H), 4.15-4.27 (1 H , two overlapping m, 4-H), 4.73-4.78 (1 H, m, 7-H), 5.39-5.45 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$), 5.89-5.95 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$) and 6.01-6.09 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$); $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 19.5$ and $19.6\left(\mathrm{CH}_{2}\right), 24.4$ and $26.3\left(\mathrm{CH}_{2}\right), 25.2$ and $25.4\left(\mathrm{CH}_{2}\right), 25.5$ and $26.1\left(\mathrm{CH}_{2}\right), 30.9$ and $31.0\left(\mathrm{CH}_{2}\right), 62.5$ and $62.6\left(\mathrm{CH}_{2}\right), 68.7$ and 68.8 [allyl-CHOC(O)A r], 69.3 and 70.4 (allyl-CH OTHP), 97.0 and 98.1 (THP-OCHO), 126.9 (aromatic, CH), 127.0 and 127.1 [olefinic, $\mathrm{CHCHOC}(\mathrm{O}) \mathrm{Ar}$], 128.5 (aromatic, C), 130.9 (aromatic, CH), 132.5 (aromatic, CH), 133.8 and 134.9 (olefinic, CHCHOTHP), 135.8 (aromatic, C), 138.1 (aromatic, C) and 164.2 (C=O); m/z 273 (19\%), 271 (29\%), 194 (6\%), 192 (61\%), 190 (81%), 177 (12%), 175 (68%), 173 (100%), 147 (12%) and 145 (28\%).

trans-1-C hloro-4-(tetrahydropyran-2-yloxy)cyclohex-2-ene

20a. A solution of 18 a ($100 \mathrm{mg}, 0.504 \mathrm{mmol}$), $\mathrm{LiCl}(46 \mathrm{mg}$, 1.08 mmol) and $2,4,6$-trimethylpyridine ($504 \mu \mathrm{l}, 3.78 \mathrm{mmol}$) in DM F ($750 \mu \mathrm{l}$) was cooled to $0^{\circ} \mathrm{C}$ and treated with $\mathrm{M} \mathrm{sCl}(58 \mu \mathrm{l}$, 0.83 mmol) followed after 20 min by diethyl ether (40 ml). The solution was washed with water (5 ml) and brine (5 ml), dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and concentrated. The residue was purified on silica (diethyl ether-pentane, $40: 60$) to give the title compound 20a ($98 \mathrm{mg}, 90 \%$). Since the product is extremely unstable it should be prepared directly before further use; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.40-2.40(10 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}$, 10-H), 3.43-3.58 ($1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$), 3.83-3.98 ($1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$), 4.16-4.30 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 4.54-4.65 ($1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$), 4.66-4.80 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$) and 5.82-6.03 ($2 \mathrm{H}, \mathrm{m}$, olefinic); $\delta_{\mathrm{c}}(100.6 \mathrm{M} \mathrm{Hz}$ CDCl_{3}) 19.7, 25.4, 25.4, 25.5, 27.5, 29.3, 29.7, 29.8, 31.1, 31.1, 54.6, 54.6, 62.6, 62.7, 68.3, 69.0, 97.3, 98.1, 130.4, 130.6, 131.1 and 131.7
trans-1-C hloro-4-pivaloyloxycyclohex-2-ene 20b. Triphenylphosphine ($836 \mathrm{mg}, 3.19 \mathrm{mmol}$) dissolved in THF (3 ml) was
added to a solution of N -chlorosuccinimide ($426 \mathrm{mg}, 3.19 \mathrm{mmol}$) in THF (5 ml) to give slightly exothermic phosphonium salt formation. After cooling of the reaction mixture to RT (20 min), 18b ($416 \mathrm{mg}, 2.098 \mathrm{mmol}$) in TH F (3 ml) was added to it; it was then stored at RT for 24 h . A fter this, the solvent was evaporated from the mixture and pentane was added to the residue. The precipitated triphenylphosphine oxide and succinimide werefiltered off and the pentane was removed in vacuo to give a residue which was purified on silica (EtOA c-pentane, 1:99). This afforded 20b ($305 \mathrm{mg}, 67 \%$) (8% of the reaction product was derived from the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ substitution mechanism); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.17\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.68-1.78(1 \mathrm{H}, \mathrm{m}$, CH_{2}), 1.94-2.04 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.12-2.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 4.574.64 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCl}$), 5.20-5.28 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ OPiv), $5.82-5.89$ ($1 \mathrm{H}, \mathrm{m}$, olefinic) and 5.98-6.04 ($1 \mathrm{H}, \mathrm{m}$, olefinic); $\delta_{\mathrm{c}}(100.6$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}, 9$ peaks) $24.8\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{3}\right), 28.7\left(\mathrm{CH}_{2}\right), 38.7$ (C), 53.6 (CHCI), 65.7 (CH OPiv), 128.3 (olefinic, CH), 132.3 (olefinic, CH) and $177.8(\mathrm{C}=0$).
trans-(1R ,4R)-1-C hloro-4-(tert-butyldimethyIsilyloxy)cyclo-
hex-2-ene ($\mathbf{1 R}, 4 \mathrm{R}$)-20c. To compound 18c ($1.503 \mathrm{~g}, 6.58 \mathrm{mmol}$) was added $\mathrm{LiCl}(558 \mathrm{mg}, 13.16 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.75 \mathrm{ml}, 19.74$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$. The solution was cooled to $-20^{\circ} \mathrm{C}$ and $\mathrm{M} \mathrm{sCl}(610 \mu \mathrm{l}, 7.881 \mathrm{mmol})$ was added to it via a syringe. The mixture was brought to RT over 3 h after which it was stirred for a further 17 h . It was then diluted with waterNaHCO_{3} (sat'd) (1:1; 30 ml) and the phases were separated. The aqueous phase was extracted with diethyl ether ($3 \times 70 \mathrm{ml}$). The combined organic phases were washed with brine (20 ml), dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and passed through a silica column packed with $\mathrm{Et}_{3} \mathrm{~N}$-diethyl ether-pentane (4:2:94). Elution with diethyl ether-pentane ($2: 98$ then $5: 95$) gave the title compound $\mathbf{2 0 c}$ ($1.484 \mathrm{~g}, 91 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 0.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3} \times 2\right)$, $0.89\left[9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.60-1.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.84-1.93(1$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.02-2.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.29-2.37\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 4.23-4.27 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ OSi), 4.56-4.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCI}$), 5.77 (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 10.4$ and 3.1 , olefinic) and 5.82 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.4$ and 3.2 , olefinic); $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}, 10\right.$ peaks) -4.7 (C-7), -4.6 (C-7'), 18.2 (C-8), 25.8 (C-9), 29.7 (C-6), 29.9 (C-5), 54.9 (C-1), 64.9 (C-4), 129.5 (C-2) and 133.5 (C-3); m/z 248 (1%), 246 (2%), 191 (24\%), 189 (64%), 93 (18%), 77 (15%) and 75 (100%); $[a]_{0}^{25}+259$ (c 1.75 in EtOH).

cis-(1S,4R)-1-A cetoxy-4-(tert-butyldimethylsilyloxy)cyclo-

hex-2-ene ($\mathbf{1 S}, 4 \mathrm{R}$)-21c. A solution of TBD M S-Cl ($2.665 \mathrm{~g}, 17.68$ mmol) in methylene dichloride (40 ml) was cooled to $0^{\circ} \mathrm{C}$ and imidazole ($6.74 \mathrm{~g}, 99.0 \mathrm{mmol}$) was added to it. A fter $5 \mathrm{~min}(-)$ 2a ($2.209 \mathrm{~g}, 14.14 \mathrm{mmol}$) dissolved in methylene dichloride (30 ml) was added to the mixture which was then stirred at $0^{\circ} \mathrm{C}$ for ca. 30 min and then at RT for 20 h . A fter being quenched with water (10 ml), the reaction mixture was extracted with methylene dichloride ($3 \times 50 \mathrm{ml}$). The combined organic fractions were washed with brine (20 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and subjected to chromatography (diethyl ether-pentane 5 :95) to give the title compound 21c ($3.79 \mathrm{~g}, 99 \%$); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 0.078\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.082\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.90[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.65-1.95\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right)$, 4.15-4.19 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSi}$), 5.13-5.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc}$), 5.71-5.75 ($1 \mathrm{H}, \mathrm{m}$, olefinic) and 5.85-5.88 ($1 \mathrm{H}, \mathrm{m}$, olefinic); $\delta_{\mathrm{c}}\left(100.6 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3}\right)-4.7\left(\mathrm{SiCH}_{3}\right),-4.6\left(\mathrm{SiCH}_{3}\right), 18.1(\mathrm{SiC})$, $21.2\left(\mathrm{COCH}_{3}\right), 25.3\left(\mathrm{CH}_{2} \mathrm{CHOAC}\right), 25.8\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.4$ ($\mathrm{CH}_{2} \mathrm{CHOSi}$), 66.3 (CHOSi), 67.0 (CHOAc), 126.2 (olefinic, CHCHOAC), 136.3 (olefinic, CHCHOSi) and 170.6 ($\mathrm{C}=0$); m/ z 210 (2\%), 117 (100\%), 79 (12\%) and 75 (33\%); [a] $]_{D}^{25}-40$ (c 1.63 in EtOH).

Acknowledgements

Financial support from the Swedish N atural Science Research Council, The Research Council of the Board of Technical D evelopment and the Swedish Research Council for Engineering Sciences is gratefully acknowledged.

References

1 (a) C. R. Johnson, P. A. Plé and J. P. A dams, J. Chem. Soc., Chem. Commun., 1991, 1006; (b) T. H udlicky and H. F. Olivo, Tetrahedron Lett., 1991, 32, 6077; (c) L. Dumortier, P. Liu, S. Dobbelaere, J. van der Eycken and M. Vandewalle, Synlett, 1992, 243; (d) C. R. Johnson, P. A. Plé, L. Su, L. M. J. Heeg and J. P. A dams, Synlett, 1992, 388.
2 (a) S. K napp, A. B. J. N aughton and T. G. M urali D har, Tetrahedron Lett., 1992, 33, 1025; (b) K. R amesh, M. S. Wolfe, Y. Lee, D. Vander Velde and R. T. Borchardt, J. Org. Chem., 1992, 57, 5861; (c) N. Dyatkina, B. Costisella, F. Theil and M. von Janta-Lipinski, Tetrahedron Lett., 1994, 35, 1961; (d) N. Dyatkina, F. Theil and M . von Janta-L ipinski, Tetrahedron, 1995, 51, 761.
3 J. E. Bäckvall, R. G atti and H. E. Schink, Synthesis, 1993, 343.
4 Alcohol (-)-2a was prepared according to R. J. K azlauskas, A. N. E. Weissfloch, A. T. Rappaport and L. A. Cuccia, J. Org. C hem., 1991, 56, 2656.
5 Compound 8 was prepared according to: J. E. Bäckvall, J. E. N yström and R. E. N ordberg, J. A m. C hem. Soc., 1985, 107, 3676.
6 R acemic (\pm)-2a was prepared by selective hydrolysis ($5 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$) of cis-1,4-diacetoxycyclohex-2-ene which was prepared from cyclohexadiene according to J. E. Bäckvall, S. E. Byström and S. E. N ordberg, J. Org. Chem., 1984, 49, 4619.
7 (a) W. Oppolzer, J.-M . Gaudin and T. N. Birkinshaw, Tetrahedron Lett., 1988, 29, 4705; (b) A. K. Bose and B. Lal, Tetrahedron Lett., 1973, 3937.
8 (a) A. Pfaltz, Acc. C hem. Res., 1993, 26, 339; (b) N. W. M urral and A. J. Welch, J. Organomet. C hem., 1986, 301, 109; (c) A. Pfaltz in Stereoselective Synthesis, E. Ottow, K. Schöllkopf and B.-G. Schulz, eds., Springer-Verlag, Berlin H eidelberg, 1993, pp. 15-36.
9 (a) B. M. Trost and J. P. G enêt, J. A m. C hem. Soc., 1976, 98, 8516; (b) B. M. Trost and E. K einan, J. A m. C hem. Soc., 1978, 100, 7779; (c) J. E. Bäckvall, R . E. N ordberg, J. E. N yström, T. Högberg and B. Ulff, J. Org. Chem., 1981, 46, 3479; (d) Y. Tanigawa, K . N ishimura, A . K awasaki and S.-I. M urahashi, Tetrahedron L ett., 1982, 23, 5549; (e) S. E. Byström, R . A slanian and J. E. Bäckvall, Tetrahedron Lett., 1985, 26, 1749; (f) J.-P. Genêt, M. Balabane, J. E. Bäckvall and
J. E. N yström, Tetrahedron Lett., 1983, 24, 2745; (g) R . E. N ordberg and J. E. Bäckvall, J. Organomet. C hem., 1985, 285, C24.
10 (a) T. Hayashi, K. K ishi, A. Yamamoto and Y. Ito, Tetrahedron Lett., 1990, 31, 1743; (b) R. Tanikaga, T. X. Jun and A. K aji, J. Chem. Soc., Perkin Trans. 1, 1990, 1185; (c) J.-P. Genêt, S. Thorimbert and A. M. Touzin, Tetrahedron L ett., 1993, 34, 1159; (d) P. von M att, O. Loiseleur, G. K och, A. Pfaltz, C. Lefeber, T. F eucht and G. Helmchen, Tetrahedron: A symmetry, 1994, 5, 573.

11 J. E. Bäckvall, K. L. Granberg and A. H eumman, Isr. J. Chem., 1991, 31, 17.
12 R. Tanikaga, J. Takeuchi, M. Takyu and A. K aji, J. Chem. Soc., C hem. Commun., 1987, 386.
13 L. Liebeskind and J. S. M cC allum, Synthesis, 1993, 819.
14 A . H assner and V. A lexanian, Tetrahedron L ett., 1978, 35, 5713.
15 (a) K. L. G ranberg and J. E. Bäckvall, J. A m. Chem. Soc., 1992, 114, 6858; (b) T. Takahashi, Y. Jinbo, K. K itamura and J. Tsuji, Tetrahedron Lett., 1984, 25, 5921; (c) P. B. M ackenzie, J. Whelan and B. Bosnich, J. Am. Chem. Soc., 1985, 107, 2046; (d) T. H ayashi, A . Y amamoto and T. H agihara, J. Org. Chem., 1986, 51, 723.
16 M. M iyashita, A . Y oshikoshi and P. A. G rieco, J. Org. Chem., 1977, 42, 3772.
17 J. E. Bäckvall, K. L. Granberg and R. B. Hopkins, Acta Chem. Scand., 1990, 44, 492.
18 O. M itsunobu, Synthesis, 1981, 1.
19 For a recent approach to Pd^{0}-catalysed desymmetrisation of cycloalk-2-ene-1,4-diol derivatives leading to enantiopure 1,4aminoalcohol derivatives see: B. M. Trost and S. R. Pulley, J. Am. C hem. Soc., 1995, 117, 10143.
20 T. Ukai, H. K awazura, Y. I shii, J. J. Bonnet and J. A . Ibers, Organomet. Chem., 1974, 65, 253.
21 (a) J. A. D ale, D. L. D ull and H. S. M osher, J. Org. Chem., 1969, 34, 2543; (b) J. A. D aleand H. S. M osher, J. A m. Chem. Soc., 1973, 95, 512. 22 J. K. Whitesell and D. Reynolds, J. Org. Chem., 1983, 48, 3548.

Paper 6/00779A
R eceived 1st February 1996 A ccepted 7th O ctober 1996

[^0]: \dagger L oss of regio- and stereo-selectivity has previously been observed in Pd-catalysed reaction of allylic acetates with amines. ${ }^{9 b, 9}$

[^1]: \ddagger The reaction proceeds via a (π-allyl)palladium intermediate. ${ }^{11}$

[^2]: §Prepared by selective hydrolysis of the acetate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}\right.$ $R T)^{17}$ in (\pm)-cis-1-acetoxy-4-pivaloyloxycyclohex-2-ene. The latter was obtained from esterification of (\pm)-2a.
 I For an experimental procedure see preparation of $\mathbf{2 0} \mathbf{c}$ in the Experimental section.
 $\|$ The protection was done by mixing the aminoacetate with $(\mathrm{BOC})_{2} \mathrm{O}$, $E \mathrm{t}_{3} \mathrm{~N}$ and catalytic amounts D M AP in methylene dichloride. Before the M itsunobu reaction the acetate was hydrolysed.

